Keratin incorporation into intermediate filament networks is a rapid process
نویسندگان
چکیده
The properties of keratin-containing intermediate filament (IF) networks in vivo were studied following the microinjection of biotinylated keratin. Keratin-IFs were biotinylated, disassembled, and separated into type I and type II proteins by ion exchange chromatography. Recombination of these derivatized type I and type II keratins resulted in the formation of 10-nm diameter IF. The type I keratins were microinjected into epithelial cells and observed by immunofluorescence microscopy. Biotin-rich spots were found throughout the cytoplasm at 15-20 min after injection. Short biotinylated fibrous structures were seen at 30-45 min after injection, most of which colocalized with the endogenous bundles of IF (tono-filaments). By 1 1/2 to 2 h after microinjection, extensive biotinylated keratin IF-like networks were evident. These were highly coincident with the endogenous tonofilaments throughout the cell, including those at desmosomal junctions. These results suggest the existence of a relatively rapid subunit incorporation mechanism using numerous sites along the length of the endogenous tonofilament bundles. These observations support the idea that keratin-IFs are dynamic cytoskeletal elements.
منابع مشابه
Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosyn...
متن کاملSimulating the formation of keratin filament networks by a piecewise-deterministic Markov process.
Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable...
متن کاملActin-dependent dynamics of keratin filament precursors.
Actin filament and microtubule growth characteristics are defined by their different plus and minus ends. In contrast, intermediate filaments lack this type of polarity. Yet, intermediate filament network growth occurs by selective addition of newly formed and polymerizing keratin particles at peripheral network domains thereby allowing polarized network reorganization. To examine this process ...
متن کاملDeletions in epidermal keratins leading to alterations in filament organization in vivo and in intermediate filament assembly in vitro
To investigate the sequences important for assembly of keratins into 10-nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin fila...
متن کاملStress-induced recruitment of epiplakin to keratin networks increases their resistance to hyperphosphorylation-induced disruption.
Epiplakin is a large (>725 kDa) cytoskeletal protein exclusively expressed in epithelial tissues. It has a unique structure, consisting entirely of plakin repeat domains (PRDs), one of the hallmarks of spectraplakin protein family members. Previous studies, including the phenotypic analyses of knockout mice, failed to reveal the biological function of epiplakin. Using in vitro binding assays, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 113 شماره
صفحات -
تاریخ انتشار 1991